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A new cavity model that can explain the interaction between viscous effects 
including vortices and cavitation bubbles is presented in this study. This model, 
which is named a bubble two-phase flow (BTF) model, treats the inside and outside 
of a cavity as one continuum by regarding the cavity as a compressible viscous fluid 
whose density changes greatly. Navier-Stokes equations including cavitation bubble 
clusters are solved in finite-difference form by a time-marching scheme, where the 
growth and collapse of a bubble cluster is given by a modified Rayleigh's equation. 
Computation was made on a two-dimensional flow field around a hydrofoil 
NACA0015 a t  angles of attack of 8" and 20". The Reynolds number was 3 x lo5. The 
experiments were also performed at the same Reynolds number for comparison. The 
computed results by the BTF cavity model can express the feature of cloud-type 
cavitation shed from the trailing edge of the attached cavities when the angle of 
attack is 8". It shows the mechanism of cavitation cloud generation and large-scale 
vortices. The boundary layer separates a t  the cavity leading edge. Then it rolls up 
and produces the cavitation cloud. I n  other words, the instability of the shear layer 
may produce the cavitation cloud. When the angle of attack is 20", the flow was fully 
separated from the leading edge of the hydrofoil and vortex cavitation occurs in the 
separated region. The BTF cavity model can also express the generation of such 
vortex cavitation and the effect of cavitation nuclei in the uniform flow. 

1. Introduction 
Cavitation (Knapp, Daily & Hammit 1970) is a very complex vapour-liquid two- 

phase flow including phase changes and viscous effects. In  spite of many excellent 
studies, the actual structure of cavitation is not yet fully understood. 

Vortex cavitation is often observed downstream of attached cavitation. It is 
caused by vorticity shed into the flow field just downstream of the cavity. Such 
vortex cavitation generates a large cavitation cloud under certain conditions. The 
vortex cavitation impinges on the body where its subsequent collapse results in 
erosion (Hutton 1986). In a previous work, the authors performed an experimental 
investigation of the unsteady structure (velocity distribution) of cloud cavitation on 
a stationary two-dimensional hydrofoil using a conditional sampling technique 
(Kubota et al. 1 9 8 9 ~ ) .  It was found that the cloud cavitation observed in the 
experiment was a large-scale vortex with many small cavitation bubbles. 
Consequently, the importance of the interaction between large-scale coherent 
vortices in the flow field and cavitation bubbles was recognized. 

Much theoretical work has also been done in order to obtain a better understanding 
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of the physics of the cavitation phenomenon. Researchers have continually developed 
new models of cavitating flow based mainly on the assumption that the flow is 
irrotational (inviscid). Helmholtz ( 1868) and Kirchhoff (1869) proposed nonlinear 
theory using hodograph mapping. Tulin ( 1955, 1964) proposed small-perturbation 
(linearized) theory for the case of a supercavitating hydrofoil. They have treated the 
cavity as a single vapour film and assumed that the pressure inside the cavity is 
constant. This is a sort of macroscopic analysis of cavitation. Using this modelling, 
many researchers have gradually improved the calculation mcthods. For example, 
Wu (1962) solved fully as well as partially cavitating hydrofoils using conformal 
transformation. Nishiyama & Miyamoto (1969) treated the problem of a super- 
cavitating foil placed under a free surface by a singularity method. Furuya also 
solved a three-dimensional supercavitating hydrofoil near a free surface (1975) and 
cavitating cascade (1980) including nonlinearity at the leading edge. Yamaguchi & 
Kato (1983) applied the singularity distribution method to a partially cavitating 
hydrofoil with an arbitrary profile in which the cavity does not occur a t  the leading 
edge of the hydrofoil. Recently, Lemonnicr & Rowe (1988) modified their calculation 
method, which was based on the panel method, in order to reduce a discretization 
error as much as possible. All the above single vapour film models are now well 
established. These models can also predict macroscopic cavity characteristics fairly 
well. However, they all dealt with only steady cavitation. Furness & Hutton (1975) 
treated the case of an unsteady attached cavity on a stationary two-dimensional 
body by the singularity method. This calculation result showed unsteadiness of the 
cavity surface and a re-entrant jet (Knapp et al. 1970). Their methods, however, 
could not predict the behaviour of a detached cavity after attached cavitation splits 
into two parts. Tulin & Hsu (1980), and van Houten (1982) have solved the unsteady 
cavity problem on a stationary or periodically oscillating hydrofoil. Their method 
also could not predict the generation of detached cavitation clouds. This is becausc 
of a limitation of the cavity model, which treats the cavity as a single vapour film 
where pressure is constant. Therefore, a new model of cavitation is required to  study 
theoretically the breakoffs of attached cavities and cavitation clouds. 

How to model the cavity trailing edge, whcrc the cavity collapses, is the most 
difficult problem for the above-mentioned single-film, constant-pressure cavity 
model. Up until now, the mirror-image model (Riabouchinsky 1920), the re-entrant 
jet model (Kreisel 1946; Efros 1946), the transient flow model (Wu 1962) and thc 
spiral vortex model (Tulin 1964) have all been put forward. When one observes 
actual cavitation, it is found that the sheet cavity splits into minute bubbles with 
vortices in the end region. Then the bubbles collapse. One can often observe many 
vortex cavities in this region even if the sheet cavity is stable. Nevertheless, this 
method of vapour-film modelling cannot explain the mechanism of a single-vapour- 
film-type cavity splitting into tiny bubbles. 

Van Wijngaarden (1964, 1968), Mmch (1981), Chahine & Lie (1985), d’Agostino & 
Brennen (1989) and others have studied the dynamics of bubble clusters. The bubble 
cluster is a kind of microscopic modelling of cavitation. However, these studies 
treated only a cluster of collapsing bubbles under given conditions. Hence, they 
could not answer the question of how the unsteady attached cavity sheds cavitation 
clouds. 

Highly vortical fluid motion such as a cavitation cloud is often observed 
downstream of a cavity. Experimental observation shows a close relationship 
between large-scale coherent vortex and cavitation (Kubota et al. 1 9 8 9 ~ ) .  Therefore, 
it is necessary to investigate the mechanism that generates the large-scale vortex 
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structure. There is a strong interaction between the large-scale vortex and cavitation. 
The occurrence of attached cavitation yields boundary-layer separation. The 
separated shear layer rolls up, thus turning into a large-scale vortex (Kiya 81, Sasaki 
1985). On the contrary, the large-scale vortex yields a low-pressure region at its 
centre. In the low-pressure region, bubbles grow and remain. Existing cavity models 
are powerless to explain the nonlinear interaction between cavitation bubbles and 
viscous phenomena. 

In this paper, we propose a new cavity model that can express the interactions 
between vortices and bubbles. We call this new model a bubble two-phase flow (BTF) 
cavity model. In  a macroscopic (coarse-grained) view, this model treats the cavity 
flow field phenomenologically as a compressible viscous fluid whose density varies 
greatly. Thus it treats the inside and outside of the cavitation as a single continuum. 
In a microscopic view, it treats cavitation structurally as bubble clusters. This is 
because the bubbles play an important role in the vortex cavitation. Consequently, 
the BTF model can express the nonlinear interaction between macroscopic vortex 
motion and microscopic bubble dynamics. In  $2, we shall discuss the detailed 
concept of the BTF cavity model and formulate the model. 

Section 3 presents a numerical solution method to solve the BTF cavity model 
formulated in $2. A finite-difference method is employed to solve the system of 
partial differential equations, including NavierStokes and Rayleigh’s equations, 
given by the BTF cavity model. Over several years, the authors developed a program 
code SACT-I1 (solution algorithm for cavitation and turbulence, version I1 ; two- 
dimensional rectangular cell version) (Kubota, Kato & Yamaguchi 1988). Now, the 
authors have developed a new program code called SACT-111. SACT-111 can solve 
the BTF-cavity-model equations by a time-marching scheme in a three-dimensional 
boundary-fitted curvilinear coordinate system (Kubota et al. 1989 b) .  

Section 4 will be devoted to the discussion of some computed results around a two- 
dimensional hydrofoil. Computations are performed both at high and low angles of 
attack in order to examine the validity and flexibility of the BTF cavity model and 
SACT-111. When the angle of attack is low, attached cavities which shed cavitation 
clouds cyclically occur at  the leading edge of the hydrofoil. When the angle of attack 
is high, the flow around the hydrofoil is fully separatcd. Vortex cavitation occurs in 
the separated region. 

Section 5 will describe the experimental results and compare them with the 
computational results presented in $4. The experiment was performed at the same 
Reynolds number as that used for the computation. 

2. Formulation of the bubble two-phase flow cavity model 
Figure 1 shows examples of the cavity appearance on a hydrofoil section. When 

the angle of attack is low, an attached cavity occurs from the leading edge of the 
hydrofoil. Then it collapses at  the mid-portion of the hydrofoil. The attached cavity 
oscillates cyclically within a certain range of cavitation number. The unsteady cavity 
sheds a cavitation cloud in each cycle as shown in the above figure (Kubota et al. 
1989a). The front part of the attached cavity is a film of vapour where pressure is 
constant. At  its rear part, the vapour film splits up into tiny bubbles. A large-scale 
vortex caused by the cavity rolls up the bubbles, thus generating a cavitation cloud. 
The collapsing region of the cavitation cloud is important for investigating the 
generation mechanism of noise, vibration and erosion. 

When the angle of attack is high, vortex cavitation occurs in the separated region 
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FIGURE 1. Unsteady cavitation on a hydrofoil, NACA0015; Re = 3 x lo5. (a) a = 8"; ( b )  a = 20". 

since the flow is fully separated from the foil leading edge. Both the cavitation cloud 
and the vortex cavitation consist of bubble clusters containing many small bubbles. 

2.1. Macroscopic modelling 
In the macroscopic view, the bubble two-phase flow model treats the inside and 
outside of the cavitation as one continuum. This is because it regards the cavity flow 
field as a compressible viscous fluid whose density varies greatly. According to this 
phenomenological modelling, contour lines of the void fraction (volume fraction of 
cavities) express the shape of cavity as shown in figure 2. 
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FIGURE 2. Modelling concept of bubble two-phase flow (BTF) cavity model. 
(a) Void fraction contours. (b) Cavitation cloud. 

Governing equations of the macroscopic flow field are as shown below 
The equation of continuity is 

aP - + V . ( p v )  = 0 ,  
at 

where t ,  p v ,  v and p are time, mass flux vector (pu, pv, pw),  velocity vector (u, v, w) and 
density of the mixture, respectively. 

The conservation equation for momentum : NavierStokes equation is 

1 
-+ at 

v .  (pvv) = - V P  + Re --p{V% +iV(V. v ) } ,  

where P is the pressure in the mixture, p is the viscosity of the mixture, and Re is the 
Reynolds number. This equation is in conservation form (Roache 1976). Liquid is 
treated as incompressible. Only the change of void fraction causes the compressibility 
of the mixture. It is assumed that there is no slip between the two phases. The non- 
dimensionalized quantities based on the uniform flow velocity and a reference length 
have been employed in the equations as shown later ((15) and (16)). 

The BTF cavity model assumes that a fluid of variable density replaces the 
water-vapour mixture. The density of the water containing bubbles (mixture) is 
defined as follows: 

(3) 

where pL is the water density and fg is the local void fraction. The mass and 
momentum of the vapour are ignored, since they are very small compared with those 
of the liquid. The actual ratio of the density of vapour to that of liquid is of the order 

The change of liquid mass owing to the phase change is also ignored. The phase 
change only affects the change of void fraction (density) in the mixture. 

P = (1 -fg) P L ,  

The viscosity of the mixture is assumed to be, 

p = ( l - f g ) p L + f g p G ,  (4) 

where pL is the water viscosity and pG is the vapour viscosity. 
Equation (4) seems to be robust computationally. Nevertheless, the dissipation is 

very important for the highly bubbly churning flow (Taylor 1932). When the bubbles 
are small, it is said that the viscosity of the mixture increases in proportion to the 
void fraction. However, when the cavity contains many large bubbles and the void 
fraction approaches one, the viscosity should reduce to the vapour viscosity. It is still 
difficult to formulate the viscosity of a mixture whose density varies greatly. This is 
why this simple equation is used in this study. 
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t +Ar  

I -Ar 

FIQURE 3. Sun-grid-scale (SGS) bubble interaction model. 

2.2 .  Microscopic modelling - local homogeneous model 

To calculate the macroscopic flow field, it is necessary to know the local void fraction 
function f K ( t , x ,  y,z). The greatest problem is to develop a model that gives the 
relationship between the flow field condition and the void fraction. The present BTF 
model treats cavitation microscopically as bubble clusters. This is because one of the 
main purpose of the BTF model is to study the vortex cavitation containing many 
tiny bubbles. In  this study, a local homogeneous model (LHM) is introduced for 
simplicity. This model is a sort of mean field approximation (MFA). It treats the 
cavity as a local homogeneous cluster of spherical bubbles. Bubble number density 
and a single typical radius are assumed locally. This typical bubble radius is obtained 
from the equation of the bubble cluster. However, this structural microscopic model 
cannot be applied to  the vapour-film-type cavitation in its strict physical meaning. 

The LHM gives the local void fraction f. by coupling the bubble density and the 
typical bubble radius as follows : 

fg = n+R3 (0 <f, < l ) ,  ( 5 )  
where n is the bubble number density and R is the typical bubble radius. 

The LHM assumes that the bubbles are spherical and that they remain separate 
and distant enough from each other. 

I n  the present computation, the bubble density n is assumed to be constant all 
over the computational domain, though real cavity flows have a distributed bubble 
density. It is known that the rear part of the attached cavity is an abundant source 
of micro bubbles. However, it is too difficult to formulate coalescence and 
fragmentation of the bubbles. 

Lord Rayleigh originally derived the equation of radial motion (growth and 
collapse) of an isolated spherical bubble in a homogeneous infinite medium (Lamb 
1932). This equation is widely known as Rayleigh's equation. It takes the following 
form, neglecting the effect of surface tension and viscous damping, 

where P, is the vapour pressure. In this study, the vapour pressure is assumed to be 
constant. This means the behaviour of the bubble is regarded as nearly isothermal 
and gas inside the bubble is also ignored. 
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As mentioned in $1, the finite-difference method was employed for the present 
SACT-111. In this method, a continuous domain is discretized into finite grid points. 
Hence, an interaction between individual bubbles within the grid spacing must be 
considered to  eliminate the effect of the computational grid. This effect is a sub-grid- 
scale (SGS) bubble interaction. Next, let us consider the SGS bubble interaction of 
the LHM, deriving analytically the equation of motion of the bubble cluster. 

As shown in figure 3, we consider the influence of the other bubbles which exist 
inside the distance r which corresponds to the grid spacing. The total velocity 
potential due to the other bubbles at the origin 0 is 

when Ri < T i .  The relative position of the bubbles is assumed to be unchanging. From 
the local homogeneous assumption, 

V ( C--Ri i;i2 2 ) - 0  - , 

and R,  = R .  (9) 

The following equation is therefore obtained by adding the time derivative of (7) to 
the original equation (6): 

The number of bubbles inside the sphere of radius Ar is 

n$Ar3. 

Then thc first term of the left-hand side in (10) becomes 

d d R  t l  

$( = - ( - R 2 Z - )  dt dt ri 

d d R  - - (- R2n 
dt dt 

= - d d R  (- R2n2nAr2) 

d2R dn dR 
=2nAr2 nR2-+-R2-+2nR [ dt2 dt dt 

4nr2 dr) 

dt dt 

Combining (10) with (12) ,  the following equation is obtained: 

d n  dR P - P  
dt dt pL 

* (13) 
d2R 
dt (1 + 2nAr2nR) R 7 + (I + 4nAr2nR) + 27cAr2- R2  - = 

The slip between bubbles and liquid is not taken into account, i.e. it is assumed 
that the bubbles are convected with the same velocity as liquid. The time derivative 
dldt is therefore replaced by 
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Dn DR P - P  
Dt Dt pL 

* (14) ( 1 + 2 ~ A r ~ n R ) R - + ( ~ + 4 ~ A r ~ n R )  + 2 ~ d r ~ - - R ~ - = -  
D2R 
Dt2 

According to (14), the effect of the other bubbles decreases with the grid interval Ar. 
This is useful in solving the present problem. This behaviour is similar to 
Smagorinsky's SGS turbulence model (Smagorinsky 1963). 

Quantities in the above equations have been non-dimensionalized based on the 
uniform flow velocity U: and a reference length d*. Hence: 

(15) 1 
P* = p; UZZP, 
I/* = U: v, 
P* = P*L P ?  

t* = td*/U*,, 

P* = YEP> 
n* = r ~ / d * ~ ,  

X* = d*x, y* = d * y ,  z* = d*z, 

where * denotes dimensional values. In the following computation, the chord length 
of a hydrofoil has been chosen as d*.  The Reynolds number Re, pressure coefficient 
C ,  and cavitation number (T are defined as follows: 

R* = d*R, 

(16) 

Re = Ug d*/v? = U z  d*pE/&, 

c, = (P*-P:) / (o .5p;ug)  = 2(P-P,), 
c7 = (P:-P,*)/(o.5p; U22) = 2(P,-PP,). 

3. SACT-I11 program 
The SACT-I11 program is the third version of the SACT (Solution Algorithm for 

Cavitation and Turbulence) series (Kubota et al. 1988, 1989b). Thc finite difference 
method is employed in the body fitted coordinates to solve the governing partial 
differential equations given in the preceding section. This section explains the 
computational procedure and the finite difference scheme of the SACT-111. The 
computational procedure is basically parallel with the Marker-and-Cell (MAC) 
method (Harlow and Welch, 1965) except for the use of a regular mesh system. 

3.1. Quasi-Poisson equation for pressure 
By taking the divergence of the Navier-Stokes equation (2), the following Poisson 
equation for pressure is given : 

V2P = - v p ) + 9 ( p u ,  u )  

a 
at = - - { v ( p u ) ) + q p v ,  v ) ,  

9 ( p u , u )  = -v  v.(puu)--p(v"t+~v(v.u))]. 1 [ Re where 

Substituting the continuity equation ( 1 )  into (18), 

VZP = -+Q(pu, a2P u ) .  
a t 2  

From (3) and ( 5 ) ,  
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By differentiating equation (20) twice by t ,  we have the following equation: 

Q = - p L 4 n n  { R ~ - + W Z  5 (9’) - , at2 

where n is assumed constant in this study, as mentioned in $ 2 .  
From (14), 

= w pv v - R + 9 ( P ) ,  
a2R 
- a t 2  ( , >;> ) 

3R 
where 9 p v , v , - , R  = -  2 ( u - V ) - + ( v - V ) ( v . V ) R  ( z )  { at 

$ + 4nAr2nR {aR 
- -+ ( v - V )  R 

(1  + 2nAr’nR) R at 

- 2nAr2R {an - + ( v . V ) n  }{: - + ( v - V ) R }  (23)  
( 1  + 2nAr2nR) R at 

and 
P,-P 

(1 + 2nAr2nR) Rp,  ’ 
9 ( P )  = 

If n = constant, the last term of the right-hand side becomes zero in (23) .  
Substituting (21)  and (22)  into (19), we obtain the quasi-Poisson equation for 
pressure including the motion of the cluster bubbles as follows: 

V2P + 9’(P)  = a‘ PV,  V ,  -, R + ~ ( P v ,  u), (25)  

where 9 ’ ( P )  = -pL4n7cR29(P), (26) 

( : )  

(27)  

The left-hand side in (25)  is approximated by the second-order finite differencing 
scheme. As a consequence, linear simultaneous equations of pressure P are obtained 
if the right-hand side is given in (25) .  The SACT-111 solves these simultaneous 
equations with a point successive relaxation method. Equation (25) is equivalent to 
the normal MAC method’s Poisson equation of incompressible flow (Harlow & Welch 

They were always set a t  zero for non-cavitating conditions. If the mixture is filled 
with liquid, (14)  cannot be solved since the bubble radius R becomes zero. If the 
mixture is filled with vapour, (2 )  cannot be solved since density of the mixture 
becomes zero. Hence, when the void fraction fg was less than fgmin( > 0.0) or more 
thanfgma,( < 1 .0), the bubble radius was fixed. Then, 9’ and 9’ were also set at zero. 
In  the following computations, fgmin and f,,,, are set as follows: 

where R, is an initial bubble radius. 
fgmin = n$nRi, fg,,x = 0.95, 

3.2. Numerical methods 
Equations (2 )  and (14)  are time-integrated with the Euler explicit scheme using the 
value of pressure P obtained by solving (25) .  To solve a high-Reynolds-number flow, 
we must pay great attention to  the differencing scheme of the nonlinear convective 
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term V(puu) (Roache 1076). In  this study, each nonlinear term in (2), for example 
(a/ax) (puv), was approximated with the fourth-order centred finite-differencing 
scheme with the fourth-derivative term : 

The fourth-derivative term plays an important role in stabilizing the calculation. 
Physically, the fourth-derivative term gives shorter-range diffusion compared with 
the second-derivative viscous term (Kawamura & Kuwahara 1984). The fourth- 
derivative term consequently stabilizes the computation without introducing any 
turbulent models. The universal applicability of the fourth-derivative term on the 
turbulent flow calculation is not yet certain. However, SACT-111 introduces no 
turbulent model sincc there is no reliable one for the cavity bubble two-phase flow 
as treated here. 

All the other space differential terms in ( 2 )  and ( 4 )  are approximated with thc 
second-order centred differencing scheme. Equation (14) ,  however, has no spatial 
diffusive term for bubble radius R and its time-derivative. The second-derivative 
term is accordingly added in (14)  to  eliminate the instability of the nonlinear terms. 
For example, 

is added into u(aR/ax). This term means diffusion. It is the same magnitude as that  
of the ordinary first-order upwind scheme (Roache 1976). 

To compute the high-Rcynolds-number flow around a body of arbitrary shape, it 
is also convenient to  use body-fitted coordinates through coordinate transformation. 
Figure 4 shows the grid system for the present problem of a flow around a two- 
dimensional hydrofoil. This system is called a C-type grid (Thompson, Warsi & 
Mastin 1985). The connected physical (x, y, z )  domain around the hydrofoil is mapped 
onto the rectangular computational ( c , ~ ,  4) domain. Here the pair of planes forming 
the branch cut are both on the same plane of the transformed region. The surface of 
the body is also mapped on the same plane as the branch cut. 

A regular mesh system is employed. Velocities, pressure, bubble radius and its time 
derivative are given on the grid points. As shown in figure 4, the uniform flow 
boundary conditions are imposed at the outer-flow boundary. Those are : 

au av aw 
= O ,  R=R,, P = O .  u = l ,  v = w = o ,  - - - _ -  

a7 a7 a7 
- -  

At the downstream and side boundaries, the boundary conditions of the zeroth order 
(zero-gradient) extrapolation are imposed. At the branch cut boundaries, the 
periodic boundary conditions are imposed. At the wall boundary, the following 
boundary conditions are imposed. 

The zero normal pressure gradient boundary conditions are simple and stable. They 
are the same as the boundary-layer approximation for incompressible flow, but only 
approximately so when the flow is viscid and compressible (Roache 1976). However, 
their error is quite small when the computational grid is fine enough near the wall 
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FIGURE 4. C-grid system around a two-dimensional hydrofoil. 
(a) Physical domain. (b) Transformed domain. 

boundaries. The same boundary condition is also imposed for the bubble radius R 
according to the zero normal pressure gradient approximation. First-order (linear) 
extrapolation is used in the ( ( , T , ( )  domain for the velocities to calculate the 
nonlinear terms, which are approximated by the fourth-order centred differencing 
scheme with the fourth-derivative term, in (2). 

Initial conditions are as follows, 

u = v = w = o  , p = O ,  R=R,. 

4. Computational results and discussion 
4.1. Condition of computation 

A hydrofoil section with a simple mathematical configuration, NACA0015, was 
chosen for the computation (Abbott & von Doenhoff 1958). The computation was 
performed at angles of attack, a, of 0", 8" and 20". The Reynolds number Re, based 
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Foil section 

Reynolds number 
Re 
Vapour density pG 
Water density 

Vapour viscosity pG 
Water viscosity pL 

- 

Angle of attack 
a 

Cavitation 
number a 

Initial bubble 
radius R, 

Bubble number 
density n 

KACAOO 15 

3 x 1 0 5  

0 

0.009 12 

0" 8" 20" 

no-cavity no-cavity 1.2 1.0 no-cavity 1.0 2.0 
1 .o 

- - 4~ 10-4 1 x 10-3 - 4 x 10-4 1 x io-s 

- 1 x 106 1 x 1 0 6  - 1 x 104 I x i06  

TABLE 1.  Computational conditions 

on the uniform flow velocity and chord length of the hydrofoil, was 3 x lo5 in all the 
computations. The computation a t  ci = 0" was performed only for non-cavitating 
conditions to evaluate numerical accuracy. Experimental observation a t  01 = 8' 
shows laminar separation without bursting near the leading edge. For cavitating 
conditions, an attached-type cavity and resulting cloud cavitation occur from the 
foil leading edge at low cavitation number. On the contrary, the flow is fully 
separated from the foil leading edge at ci = 20", even for non-cavitating conditions. 
As the result, large-scale vortex cavitation occurs in the separated region. Table 1 
denotes the computational conditions. As mentioned in $2.2, the bubble density is 
assumed t o  be constant all over the computational domain. 

The time increment At was determined in each computational step to keep the 
Courant number less than 0.25. These low Courant numbers are needed to stabilize 
computations. The present computation is prone to instability since the density and 
pressure change widely. The relaxation factor was set to be 0.8 when (25) was solved 
with the successive relaxation method. However, it was reduced to 0.3 for cavitating 
conditions. The convergence condition of the pressure computation is as follows : 

max (IAPI) < 0.001 
max (I@[) < 0.01 

(for non-cavitating conditions), 
(for cavitating conditions), 

where A€' is the residue of pressure in the iterative calculation. 
Preceding the computations for cavitating conditions, i t  was necessary to evaluate 

the numerical accuracy of SACT-I11 for non-cavitating conditions. Figure 5 shows 
the C-grid system. The grids were uniform in the spanwise section. The number of 
grid points was 101 (5) x 31 (7) x 3 (5).  The computations in this study were made on 
a two-dimensional flow field though the computer code was three-dimensional 
(Kubota et al. 19896). The distance was 1.2 from the trailing edge to the upper or 
lower boundaries. It was the same as the distance of the experiments in $5. The 
distance was 3.0 between the trailing edge and the downstream boundary. The front- 
part shape of the outer-flow boundary was oval as shown in figure 5 .  A direct 
numerical method (Kodama 1988) was used for the grid generation. The minimum 
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FIGURE 5. C-grid system around KACA0015 hydrofoil at a = Oo, 101 x 31 x 3. 
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FIGURE 6. Foil surface and wake pressure coefficients, EACA0015, a = Oo, T = 2:  0 ,  experiment 
(Re = 6 x lo5) ; 0 ,  A, present calculation (Re = 3 x lo6) ; ---, Hess-Smith method +boundary- 
layer calculation (Re = 3 x los). 

grid spacings at the leading and trailing edges were 0.70 x and 1.54 x lop4, 
respectively. The minimum spacing was about one twelfth of Re-; at the trailing 
edge. 

Figure 6 shows the pressure distribution on the foil surface at T = 2 (T means time 
t ) .  The angle of attack is 0". The circles show the distribution of C, on the foil 
surface. Since NACA0015 is a symmetrical hydrofoil, pressure on the upper and lower 
surfaces would be same. A little difference near the trailing edge is due to  the 
asymmetry (unsteadiness) of the flow field. The triangles show the distribution of C, 
in the wake, i.e. along the branch cut shown in figure 5. The computational result is 
compared with the computation using the Hess-Smith method (Hess & Smith 1967) 
and the measurement a t  Re = 6 x lo6 by Izumida (1980). The Hess-Smith method is 
a numerical solution method of potential flow based on the singularity distribution 
method. The foil shape was modified by adding the computed displacement thickness 
of the foil surface boundary layer (Yamaguchi et al. 1988). The computed result by 
SACT-I11 agrees very well with the others as shown in figure 8. Furthermore, the 
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FIGURE 7. Close-up of the grid system around NACAOO15 hydrofoil, u = 8 O ,  101 x 31 x 3. 

1 .oo 
FIaunE 8. Computed velocity vectors around NACA0015 hydrofoil for non-cavitating 

Conditions, a = 8", Re = 3 x lo5. 

pressure coefficient a t  the front stagnation point is 0.982, which is almost equal to  1. 
As a consequence, the present numerical method has good accuracy when the grid 
system is fine enough. The computed pressure distributions disagree with the 
experimental result when the coarser grid systems near the foil surface are used 
(Kubota et al. 1989b). 

4.2. Structure of an unsteady attached cavity and it5 wake 

Figure 7 shows a close-up of the grid system around the NACA0015 hydrofoil. The 
angle of attack was 8". The number of grid points was 101 x 31 x 3. It was the same 
as that a t  a = 0". The minimum spacing was 0.7 x lop4 at the trailing edge. It was 
almost the same as that of the grid system a t  a = 0". Figure 8 shows the time- 
averaged velocity vectors from T = 2 to  4 for non-cavitating conditions. The 
computation was performed stably. The main flow is from left to right. The boundary 
layer separates a t  X = 0.74 on the back. Instantaneous velocity vectors show 
unsteady vortex shedding from the foil trailing-edge region. I n  the other region, the 
flow is almost steady. No separation occurs near the leading edge. 

Figure 9 shows the time-averaged pressure distribution on the foil surface and 
wake a t  a = 8'. The result by SACT-111 agrees fairly well with the experimental one. 
However, the computed C ,  on the back is almost 0.3 higher than the experimental 
one. Prediction by the Hess-Smith method with the boundary-layer correction 
agrees very well with the experimental one. The lift coefficient C, predicted by 
SACT-111 is only about 58% of that obtained by experiment. Figures 10 and 11 
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FIQURE 9. Time-averaged foil surface and wake pressure coefficients for non-cavitating conditions, 
NACA0015, a = 8", Re = 3 x lo5. 0 ,  experiment ; 0 ,  A, present calculation ; ---, Hess-Smith 
method + boundary layer calculation. C, (experimental) = 0.946. C, (calculated) = 0.5505. 

0.02 

0.01 

0 
L.E. M.C. T.E. 

FIQURE 10. Boundary-layer displacement thickness distribution for non-cavitating conditions, 
NACA0015 back, a = 8", Re = 3 x lo5. -, present calculation ; ---, boundary-layer calculation ; 
0 ,  separation point; *, separation bubble. 
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FIGURE 1 1 .  Boundary-layer form factor distribution for non-cavitating conditions, KACA0015 
back, a = 8", Re = 3 x lo5. ~ , present calculation ; ---, boundary-layer calculation ; a, 
separation point; *, separation bubble. 

FIGURE 12. Void fraction contours around NACA0015 hydrofoil, m = 1.2, a = 8 O ,  Re = 3 x lo6, 
the contour interval is 0.1 except for the most outer line. 

shows the comparison of the boundary-layer-displacement thickness and form factor 
on the back between the present computation and the ordinary boundary-layer 
calculation. As shown in these figures, the boundary-layer characteristics agree well 
up to about 60 % chord station. The disagreement of the pressure distribution must 
be because the trailing-edge separation occurs more upstream. However, the 
computed shape of the pressure distribution agrees well with the experiments. 
Hence, the disagreement of pressure hardly affects the nature of the unsteady 
cavitation (Kubota et al. 1989b). 

In the following computation for cavitating conditions, the grid scale of the SGS 
bubble interaction model is assumed to be, 

r = (g1/7c)a, (32) 

where 

This is because the present computations are two-dimensional. Accordingly, the SGS 
bubble interaction effect is independent of the grid spacing in the spanwise direction. 

Figure 12 shows contour lines of the void fraction at c = 1.2. In  this study, we 
define a cavity as a region where the void fraction is more than 0.1. The bold contour 
lines are those of fg = 0.1 in this figure. Contour lines are drawn a t  an interval of 0.1 
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0.01 

FIGURE 13. (a) Time-averaged pressure coefficient distribution and ( b )  void fraction contours 
around NACA0015 hydrofoil, cr = 1.2, a = 8", Re = 3 x lo6, the contour interval is 0.1 except for 
the most outer line. T = 3-5; C, = 0.5472; G ,  = 0 . 0 6 9 3 ; ~ ,  cavity area. 

except for the most outer line of fg = 0.01. The rear portion of the cavity oscillates 
cyclically. Not only does the cavity length change, but the cavity also rises up a t  its 
rear part. The unsteady characteristics computed here agree well with the 
experimental observations of attached cavitation (Izumida et al. 1980). 

Figure 13 shows the time-averaged pressure distribution on the foil surface and 
void fraction contour lines a t  CT = 1.2. The foil surface pressure where cavity exists 
is almost constant and equal to the vapour pressure (C, = - 1.2). However, a small 
negative pressure peak exists at the front of the cavity. Such pressure distribution 
is similar to the calculated result by a nonlinear free-stream line theory and the 
experimental ones (Yamaguchi & Kato 1982,1983). Furthermore, the time-averaged 
cavity shape is similar with the experimental observation of attached cavity. 

Figure 14 shows the close-up of time-averaged pressure contours around the 
hydrofoil a t  CT = 1.2. The contour line of fg = 0.1 (the bold broken line) agrees 
approximately with that of C, = - 1.2. This is the reason why, in this study, the 
cavity is defined as a region where the void fraction is more than 0.1. 

In the present computations, vorticity is defined as follows : 

The vorticity transport equation, which is obtained by taking curl of the momentum 
equation, for three-dimensional flow is written as : 

up x VP 
-= ( o . V ) o - ( V . 1 ) ) o +  
Dt P2 . 
D o  

(34) 
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FIQURE 14. Close-up of time-averaged pressure coefficient contours, CT = 1.2, a = 8 O ,  Re = 3 x lo5, 
the contour interval is 0.1, the bold broken lines are void fraction contours of 0.1. Vertical 
exaggeration of 4 : 1. 

I I I I I I 

0 0.1 0.2 0.3 
X 

FIGURE 15. Close-ups of (a )  vorticity contours (contour interval 50) and ( b )  baroclinic torque 
contours (contour interval 200), rr = 1.2, CL = 8". Re = 3 x lo5. the bold broken lines are void 
fraction contours of 0.1. Vertical exaggeration of 4:  1. 
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FIGURE 16. Time-averaged velocity profiles in cavity wake region, v = 1.2, a = 8", Re = 3 x lo5, 
fine lines show the boundary-layer velocity profiles for non-cavitating conditions. 

The viscous term is negligible since the Reynolds number of the flow is high. The left- 
hand term is the rate of change of vorticity by the fluid convection. The first term 
of the right-hand side is the vortex stretching. The second and the last terms are the 
fluid expansion and the baroclinic torque, respectively (Soetrisno et al. 1988). For 
two-dimensional flow, only the fluid expansion and the baroclinic torque are 
mechanisms for vorticity dynamics. The baroclinic torque is particularly important 
since i t  plays the role of source term of the vorticity caused by the density and 
pressure gradients. Figure 15 shows time-averaged contour lines of vorticity (positive 
in clockwise) and the baroclinic torque. Broken lines denote negative value in the 
vorticity and baroclinic torque contours. A large negative vorticity region exists in 
the cavity underlayer. The baroclinic torque also takes a large negative value there. 
It appears that  the density change of fluid due to cavitation has a strong effect on 
vorticity dynamics. 

Bold lines in figure 16 show time-averaged velocity profiles in the cavity wake 
boundary layer along q-coordinate. Fine ones are profiles for non-cavitating 
conditions. As shown in the section o f l  = 61 (X = 0.2115), the flow inside the cavity 
is quite slow except near the foil surface where a wall jet occurs. At the section of 
I = 64 (X = 0.3375), strong reverse flow occurs. At I = 67 and 69 (X = 0.4812 and 
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FIGURE 17. Comparison of boundary-layer displacement thickness 
= 1.2, a = 8 O ,  Re = 3 x lo5. -, u = NACA0015 hydrofoil, 

distribution 
1.2; ---no 

on the back of 
cavitation. 

FIGURE 18. Void fraction contours around KACA0015 hydrofoil, 5 = 1.0, a = So, Re = 3 x lo5, 
the contour interval is 0.1 except for the most outer line. 
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FIGURE 19. Pressure coefficient contours around NACA0015 hydrofoil, u = 1.0, a = 8 O ,  

Re = 3 x lo5, the contour interval is 0.1, the bold broken lines are void fraction contours of 0.1. 

0.5832), the flow reattaches and the inflexion points exist in the velocity profiles. The 
measurement result downstream of a stable attached cavity shows similar inflexion 
points in the velocity profile (Yamaguchi et al. 1985; Kato, Yamaguchi & Kubota 
1987). As shown in this figure, the generation of a cavity causes an increase in the 
boundary-layer thickness behind it. Figure 17 shows the comparison of the chordwise 
distributions of the boundary-layer-displacement thickness including the density 
effects for cavitating and non-cavitating conditions. For cavitating conditions, the 
displacement thickness decreases at the cavity collapsing region. It reaches a 
minimum a t  the mid-chord, then it begins to increase again. This is the same 
tendency as the experimental results (Kato et al. 1987). 

4.3. Mechanism of cloud cavitation 
Figure 18 shows void fraction contour lines a t  cr = 1.0 with the time increment of 0.2. 
For this condition, the unsteady cavity repeats growth and collapse. The highly 
distorted attached cavity sheds the cavitation cloud cyclically (T = 5.9). Then it 
soon collapses. This phenomenon agrees well with many experimental observations 
(Kermeen 1956; Wade & Acosta 1966; Alexander 1974; Shen & Peterson 1978; 
Izumida et al. 1980; Franc & Michel 1985). 

Figure 19 shows pressure coefficient contours around the foil. Overlaid bold broken 
lines are void fraction contours of 0.1. As mentioned before, they show instantaneous 
cavity shapes. The negative pressure peaks correspond to the clockwise (positive) 
vortices (Kubota et al. 1989b). It is concluded consequently that the unsteady 
attached cavity sheds not only cavitation clouds but also vortices. The experimental 
result has confirmed such vortex-shedding phenomena (Kubota et al. 1989a). 

Figure 20 shows close-ups of the velocity vectors around the cavity. This figure 
suggests the mechanism of the cavitation cloud shedding. At T = 5.5, a new 
separation vortex occurs a t  the cavity leading edge. A high velocity flow begins to  
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Flow toward the foil surface 
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FIGURE 21. Mechanism of cloud cavitation. 

FIQURE 22. Close-up of the grid system around NACA0015 hydrofoil, a = 20°, 101 x 31 x 3. 

appear near the wall region at the middle of the cavitation. Then the separation 
vortex induces the flow toward the foil surface (T = 5.7). Fluid density and pressure 
on the foil surface increase, owing to the impinging flow. It causes the cavity to break 
and tear off (T = 5.9, separation of the cavitation cloud). The impinging flow turns 
into the jet along the foil surface. The jet sweeps away the cavitation cloud (T = 6.1). 

Figure 21 schematically illustrates the above mechanism of cloud cavitation. The 
most essential phenomenon seems to be the behaviour of the shear layer separated 
at  the cavity leading edge. This is because it allows the jet into the cavity. The jet 
plays an important role in cavity break-offs. In other words, the unsteadiness of the 
shear layer produces the cavitation cloud. Another important point is the role of the 
re-entrant flow at the cavity trailing edge. Referring to the velocity vectors at 
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FIGURE 23. Velocity vectors around NACAOOI 5 hydrofoil for non-cavitating conditions, 
a = 20", Re = 3 x LO5. 

T = 5.5 in figure 20, we also observe reverse flow at  the cavity trailing-edge region. 
This is what is called the re-entrant jet, which is observed by many researchers 
(Knapp et al. 1970). It is often said that the re-entrant jet progressing under the 
cavity towards the leading edge causes the cavity break-offs (Joussellin et al. 1991). 
However, as far as the present calculation is concerned, the wall jet seems to play a 
more important role in the separation mechanism of the cavitation cloud. 

To examine the effect of the number of grid points, we performed the computation 
using a finer grid system a t  u = 1.0. The number of grid points was 141 x 41 x 3. The 
computational result shows the same tendency as the previous ones. We also 
observed the jet inside the cavity. The results show that the number of grid points 
has a lesser effect on the computed cavity appearances. 

4.4. Vortex cavitation around a hydrofoil at high angle of attack 
Next, we show the results around NACA0015 hydrofoil a t  an angle of attack a of 20". 
The number of computational grid points was 101 x 31 x 3. It was same as that a t  
a = 0" and 8". Figure 22 shows the close-up of the grid system. To resolve the fully 
separated large-scale vortices, grid points were not as concentrated near the foil 
surface. The minimum spacing was 6.20 x lop3 a t  the trailing edge. It was about 7 
times as wide as that  at a = 8". 

First, the onset of separation and the growth of the large-scale separation vortices 
are explained for non-cavitating conditions. At a = 20", large-scale separation 
vortices occur even for non-cavitating conditions. 
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FIGURE 24. Void fraction contours around NACA0015 hydrofoil in the low-bubble-density 
condition (case A ) ,  u = 1.0, a = ZOO, Re = 3 x lo6, the contour interval is 0.1 except for the most 
outer line. 

Figure 23 shows the unsteady velocity vector fields around the hydrofoil. The first 
large-scale separation vortex A (clockwise) occurs at  the leading edge and grows. 
Strong reverse flow is observed on the back. The vortex extends with time. At 
T = 5.5, the first separation vortex A stagnates above the trailing edge. A new 
separation vortex B appears and a secondary vortex C (counterclockwise) is formed 
between A and B.  The secondary vortex C grows. Then, it extends below the first 
separation vortex A .  A large reverse flow region appears between the foil surface and 
the first and the second separation vortices. The flow does not impinge on the foil 
surface. Since the first separation vortex A stays above the trailing edge, the 
separation vortex B continues to approach the vortex A .  Finally, they coalesce at 
T = 6.5. 

The above is the unsteady flow structure around a hydrofoil at  high angle of attack 
for non-cavitating conditions. The separated shear layer from the leading edge rolls 
up first. Then, it turns into a large-scale vortex. The large-scale vortices repeat the 
cyclic procedures, i.e. formation - coalescence - shedding. This mechanism is deeply 
connected with the behaviour of the secondary vortices (Mehta & Lavan 1975). This 
secondary vortex is caused by the interaction between the separation vortices and 
the foil surface. The present grid system cannot fully resolve the small-scale vortex 
structure. However, it appears that the essential large-scale flow structure was 
resolved satisfactorily. 

Johnsson (1969) showed experimentally that initial bubble number density affects 
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FIGURE 25. Comparison of pressure coefficient distributions, a = 20°, Re = 3 x lo5. (a) T = 10, 
no cavitation. ( b )  T = 1 1 ,  u = 1 .O (case A ) .  

FIGURE 26. Void fraction contours around NACA0015 hydrofoil in the high-bubble-density 
condition (case B) ,  c = 2.0, a = ZOO, Re = 3 x lo5, the contour interval is 0.1 except for the most 
outer line. 

appearances of vortex cavitation very much. Therefore, two different bubble-density 
conditions are adopted for the computation of a cavitating hydrofoil as follows: 

Density (n) Initial radius (R,) 
Case A (lower density) 1 x 104 4~ 10-4 
Case B (higher density) 1 x 106 i x 10-3 

The initial void fractions of case A and R are 2.68 x and 4.19 x lop3, respectively. 
= 1.0. The bubble number 

density is low (case A ) .  For this condition, only large vortex cavitation occurs above 
the trailing edge. Only a small attached cavity occurs near the leading edge. The first 

Figure 24 shows the void fraction contour lines a t  
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FIGURE 27. Pressure coefficient contours around KACA0015 hydrofoil in the high-bubble-density 
condition (case B), B = 2.0, a = 20D, Re = 3 x lo5, the contour interval is 0.1. 

vortex cavitation appears at T = 11. It stagnates and grows as shown in this figure. 
A t  1 = 12, this grown-up vortex cavity attaches to the foil surface. After that, i t  
begins to disappear. The cavity hardly moves downstream during its whole life. The 
flow structure is similar with that for non-cavitating conditions even if the trailing- 
edge vortex cavitation occurs. The trailing-edge vortex cavitation disappears when 
the large-scale vortex is shed from the hydrofoil trailing-edge region. 

Figure 25 shows the pressure distributions on the foil surface for non-cavitating 
and cavitating conditions (a = 1.0, case A ) .  Their shapes are almost the same. The 
peak at the leading edge remains, even for cavitating conditions. Though the 
pressure at this peak region is much lower than the vapour pressure (C, = - l),  no 
large attached cavity occurs there. This is because bubbles are too few and small to 
grow enough in such a short time. 

Secondly, cavitation computations were performed under the higher-bubble- 
density condition (case B).  Figure 26 shows the void fraction contours a t  cr = 2. Only 
unsteady attached cavity occurs near the leading edge. The attached cavity 
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FIGURE 28. Instantaneous pressure coefficient distributions in the high bubble density condition 
(case B) ,  u = 2.0, a = 20°, Re = 3 x lo5. (a) T = 14.00, c7 = 2.0 (case B). (b) T = 14.75, u = 2.0 
(case B) .  
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FIGURE 29. Veloity vectors around NACA0015 hydrofoil in the high-bubble-density condition (case 
B) ,  u = 1.0,a = 20°, Re = 3 x lo5, T = 12.0, the bold broken lines are void fraction contours of 0.1. 

oscillates at higher frequency than that a t  IT = 1 of case A (see figure 24). No vortex 
cavitation appears near the trailing edge. Under the lower-bubble-density condition 
(case A ) ,  a cavity did not appear at all for the same cavitation number of 2. 

Figure 27 shows the pressure coefficient contours around the hydrofoil. At T = 14, 
the separated shear layer from the leading edge forms a large-scale vortex (lower 
pressure region ; it is designated as A ) .  This large-scale vortex does not stagnate 
above the trailing edge. This is because a higher pressure region remains between the 
two large-scale vortices. It pushes out the vortices smoothly as shown in this figure. 
As a result, vortices never coalesce there for the present condition (T = 14.5). After 
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Leading-edge Trailing-edge Vortex 
attached cavity vortex cavity coalescence 

No-cavitation X X 0 
CT = 2.0 Case A X X 0 

Case B 0 X X 

u = 1.0 Case A X 0 0 
Case B 0 0 0 

Case A :  lower bubble density (n = 1 x lo4,& = 4 x 
Case B: higher bubble density (n = 1 x lo6, R, = 1 x 

TABLE 2. Cavity types and vortex behaviour, NACA0015; a = 20'; Re = 3 x los 

the large-scale vortex has flowed out, a new separation vortex appears (T = 15.0). 
The most important feature of the flow structure is that no large reverse flow region 
appears on the back. The separated flow reattaches all the time. Accordingly, the 
flow always impinges between the large-scale vortices and causes the higher pressure 
region. 

Figure 28 shows instantaneous pressure distributions on the foil surface. Small 
peaks correspond to respective roll-up vortices (see marks A ,  B,  and C in figure 27). 
They move downstream with the vortices. The negative pressure peak near the 
leading edge is smaller than that for non-cavitating conditions, which has been 
shown in figure 29. This is because the attached cavity occurs there in case B. 

Figure 29 shows the velocity vector fields around the hydrofoil under the higher- 
bubble-density condition (case B )  a t  cr = 1. The bold broken lines are contours of 
fg = 0.1 (cavity shapes). Both leading-edge attached cavity and trailing-edge vortex 
cavity are observed. Only the vortex cavity occurred under the lower-bubble-density 
condition at  the same cavitation number (see figure 24). The leading-edge attached 
cavity is quite large at the higher-bubble-density condition. Nevertheless, it is rather 
stable, particularly at its front part. A very large-scale coalescing vortex is observed 
above the trailing edge. However, it is weaker than in case A .  Strong reverse (re- 
entrant) flow exists at the end of the attached cavity all the time. It appears that the 
re-entrant flow scoops out the rear part of the attached cavity near the foil surface 
for these conditions. 

As shown in the above calculation, the initial bubble radius and density have a 
great influence on the cavitating flow structure around a separated hydrofoil. Under 
the higher-bubble-density condition (case B) ,  the attached cavity which occurs at  the 
leading edge changes the structure of the separation vortices. 

Lastly, table 2 shows an at-a-glance relationship chart between cavity types and 
vortex behaviour. All the computations in this study were carried out on the HITAC 
M-680H mainframe computer at  the Computer Center of the University of Tokyo. 
The CPU time was about 1-20 hours. 

5. Comparison with experimental results 
5.1. Experimental set-up and method 

To verify the aforementioned computational method and results with the program 
code SACT-111, experiments were performed for the same NACA0015 hydrofoil. 
Photographs and high-speed films of cavitation were taken for some typical 
conditions. 
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FIGURE 30. Comparison of nuclei number density distribution functions, alas = 100% solid 
circles show those used for computations. -, cr = 1.20; ---, cr = 2.30; ---, cr = 3.54. 

All the experiments in this study were carried out in the Foil Test Section of the 
TE-type Cavitation Tunnel a t  the Department of Naval Architecture and Ocean 
Engineering, thc University of Tokyo (Kodama et aE. 1981 ; Iriouc et al. 1986). The 
working section is 120 mm high and 50 mm wide. The turbulence level is low enough 
in the test section owing to the 6 wire-mesh screens placed upstream of the test 
section and the high contraction ratio (26: 1). The measurement with an LDV showed 
that the turbulence level of the mean flow was about 0.3 YO on average. The velocity 
distribution measured with the LDV was uniform within 0.5%. The chord length 
and the span width of the hydrofoil NACA0015 model were 50 and 49mm, 
respectively. The uniform velocity measurements were performed one-chord-length 
upstream of the foil section leading edge. The static pressure in the test section was 
measured with a strain gauge type pickup. The film speed of the 16 mm high-speed 
camera was about 4000 FPS. Uncertainty of the LDV (velocity) was about + 1 YO. 
The uncertainty of the pressure was + 1.5 x lo3 Pa ( +0.015 kg/cm2). 

The experiments were performed a t  angles of attack 01 of 8" and 20°. The Reynolds 
number Re was 3 x lo5. They were the same as those for the computation. As a result, 
the uniform flow velocity was about 6 m/s since the water temperature was about 
20 "C. To investigate the effects of bubble nuclei radius and density on cavitation, 
two conditions were chosen for the air content in the water. Those were 30 and 100 YO 
of the saturated condition a t  1 atm. The air content was measured with a D. 0. 
meter. 

The number and size distributions of bubble nuclei in the water were measured in 
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u =  1.2 

FIGURE 31. Comparison of sheet-type cavity appearance on NACA0015 hydrofoil, a = 8 O ,  
Re = 3 x lo5, a/a,  = 30% (experiment). ( a )  Experimental observation. ( b )  Computed result. 

Bubble density 
n* [m-"1 

a=8' c =  1.2 8 x  log 

c =  1.0 8x10' 

a = 20' Case A 8 x lo' 

Case B 8 x lo9 

(n  = 1 x 106) 

(n = 1 x 106) 

(n = i x 104) 

(n  = 1 x 1 0 6 )  

Bubble radius Nuclei number 
R,* [ P I  density distribution [m-4] 

20 2 x 1014 
(R, = 4 x 10-4) 
50 8 x 1013 
(R, = 4 x 10-6) 
20 2 x 10'2 
(R, = 4 x 10-4) 
50 8 x 10la 
(R,  = 4 x 10-6) 

( ) : non-dimensional value 

TABLE 3. Dimensional bubble density and radius for computations, d* = 50 x lo3 rn 

three cases using 35 mm photographs by a camera with telemicroscopic lenses. The 
area of the photographs was 8.76 mm x 6.51 mm. The depth of focus was estimated 
a t  2.00 mm. The measurement point was same as that of the uniform flow velocity 
measurement. The air content in the water alas was 100%. Figure 30 shows the 
measured nuclei number density distribution functions (Gates 1977). The bubble 
nuclei density increases with decreasing cavitation number, that is, with decreasing 
test section pressure, when the nuclei radius is more than 50pm. Limitation of 
resolution of the photographs causes a reduction of the measured number of bubbles, 
especially those less than 50 pm radius. According to other measurements, the nuclei 
density increases monotonously with decreasing nuclei size. When the air content 
was 30%, no nuclei were observed in the photographs. Table 3 shows the 
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cr = 1.0 

FIGURE 32. Comparison of cloud-type cavity appearance on NACA0015 hydrofoil, a = ti0, 
Re = 3 x lo5, a/a, = 30% (experiment). (a) Experimental observation. ( b )  Computed result. 

dimensionalized initial bubble density and radius used for the computations 
(representative length d* = 50 x m). Furthermore, assuming that the radius of 
the bubble nuclei is distributed uniformly between 0 and 2R$, the nuclei number 
density distributions arc obtained as shown in table 3. They are also illustrated in 
figure 30 with solid circles and arrows. Though the bubble nuclei may seem too many 
in the computations for 01 = 8", they arc reasonable for the simulation of the cavity 
collapsing region. This is because the measurements with a light-scattering technique 
(Tamura et al. 1985) and a laser holography system (Maeda, Yamaguchi & Kato 
1991) yielded a remarkable increase (more than 100 times) in bubble number behind 
an attached cavity. 

5.2. Cavitation appearance 

Figure 31 shows a photograph of cavitation a t  cr = 1.5. The angle of attack of the 
hydrofoil was 8". The air content in the water was 30%. We can observe the attached 
cavity followed by many small bubbles in the cavity collapsing region and the wake. 
Figure 31 also shows the computed cavity appearance a t  u = 1.2. It agrees well with 
the experimental observation a t  g = 1.5. The difference in the cavitation number 
(0.3) is almost equal to that of the pressure distributions for non-cavitating 
conditions between computed and experimental ones (see figure 11) .  

At the lower cavitation number, the whole cavity began to oscillate cyclically, 
even if the far-field condition was steady (Kubota et al. 1 9 8 9 ~ ) .  Figure 32 shows a 
typical example of the cavity observation a t  CT = 1.3. As shown in this figure, the 
break-off of the attached cavity first occurs near the leading edge. The break-off 
point of the attached cavity agrees with the computational result. The separated 
cavitation cloud moves downstream with the attached part of the cavity growing. 
Then the cavitation cloud flows into the wake. Though the calculated cavitation 
cloud disappeared immediately (see figure 18), the experimentally observed 



A new modelling of cavitating JEows 

(4 

91 

FIGURE 33. Comparison of vortex-type cavity appearance on Pr'ACA0015 hydrofoil in the low 
bubble density condition, u = 20°, Re = 3 x lo6, u/a, = 30 % (experiment). (a) Experimental 
observation. ( b )  Computed result. 

cavitation clouds remained for some time. This is because the present BTF model did 
not take into account the generation of the tiny bubbles at  the cavity collapsing 
region and their concentration into the vortex centre. However, the difference 
between the model and the real phenomena appears not to much influence the 
fundamental mechanism of cavity break-off. 

Next, appearance of cavitation is shown at an angle of attack of 20". For non- 
cavitating conditions, a shear layer separates from the leading edge of the hydrofoil. 
It is composed of a succession of clockwise vortices. Figure 33 shows the side view of 
cavitation at u = 1.7. The air content in the water was 30%. The cavitation 
inception occurs mainly in the separated flow region. Some bubble nuclei grow in the 
separated shear layer and expand explosively into large distorted cavities. 
Counterclockwise vortex cavitation also flows out of the foil trailing edge. No 
attached cavity occurs near the leading edge. While the cavitation number does not 
agree exactly, the computed cavity appearance at  u = 1.0 captures these features. 
The present microscopic cavity model used for the computation (LHM) is appropriate 
for the cavity growing in the separated flow region. 

Figure 34 shows the cavity appearance at  alas = 100%. The cavitation number 
was 2.3. The important feature is that the cavitation inception occurs near the 
leading edge of the hydrofoil as shown in this picture. In  this case, the leading-edge 
cavity grows bigger with decreasing cavitation number. This leading-edge cavity is 

4 FLM 240 
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FIGURE 34. Comparison of vortex-type cavity appearance on h'ACA0015 hydrofoil in the high 
bubble density condition, a = 20°, Re = 3 x lo5, alas = 100% (experiment). ( a )  Experimental 
observation. ( b )  Computed result. 

so unstable that the cavitation clouds arc shed intermittently. Though there are 
many bubble nuclei in the wake region, no large vortex cavity occurs near thc 
trailing edge of the hydrofoil. 

The cavity appearance in figure 34 is quite different from that in figure 33. This is 
a typical example of the effect of bubble nuclei density on the cavity appearance. The 
computational result a t  u = 2.0 captures and explains this phenomenon. Under the 
lower-bubble-density condition (a/a, = 30% or case A ,  figure 33), no leading-edge 
cavitation occurs, since there are too few bubbles and too little time to grow the very 
small nuclei there. Accordingly, the behaviour of the separated free shear layer is 
similar to that for non-cavitating conditions. Separation vortices coalesce near the 
foil trailing edge and a large vortex cavitation appears there. On the contrary, cavity 
inception occurs near the leading edge of the hydrofoil a t  a/a,  = 100%. This is 
because many large nuclei grow explosively in the low-pressure region of short 
duration at  the foil leading edge. This leading-edge cavity changes the flow structure 
since it splits up the separation vortices. The rolling-up vortices flow out without 
coalescing near the trailing edge as shown in the computational result (see figure 27). 
As a result, no large-scale vortex cavitation occurs there. 

5.3.  Vortex coalescence 

Figure 35 shows high-speed photographs of the cavitation appearance a t  an angle of 
attack of 20". Cavitation number was 1.7 and the air content ratio was 30 YO. A time- 
interval between the respective pictures is 1.3 x s (the non-dimensional time- 
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FIGURE 35. High-speed photographs of cavitation on NACA0015 hydrofoil, c = 1.7, u = 20", 
Re = 3 x lo4, uja, = 30%. 

interval of 0.12). The coalescence of vortex cavitation 'is observed clearly in these 
pictures. The first vortex cavity A appears and grows above the trailing edge of the 
hydrofoil. It moves downstream very slowly. Next, the vortex cavity B appears and 
as it grows approaches the former vortex cavity A .  The vortex cavity A hardly 
changes its position. As a consequence, the two vortex cavities A and B coalesce. 
Then, the coalescing vortex cavity A + R  flows downstream rapidly as it collapses. 
This vortex coalescing process has the same nature as the computed results. 

4-2 
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6. Concluding remarks 
In this study, the authors presented a new modelling concept of cavitation called 

a BTF (bubble two-phase flow) model. In a macroscopic view, this new cavity model 
treats the inside and outside of a cavity as one continuum. That is, i t  regards the 
cavity flow field phenomenologically as a compressible viscous fluid whose density 
varies greatly. Contour lines of void fraction can express the cavity shape. In a 
microscopic view, a simple LHM (local homogeneous model) is introduced. This is a 
kind of mean field approximation. This structural microscopic model treats a cavity 
as a locally homogeneous bubble cluster. Assuming bubble density and a typical 
bubble radius, a local void fraction function is given. The BTF cavity model is 
significant in the following points : 

1.  The BTF cavity model can investigate the nonlinear interaction between 
viscous flow with large-scale vortices and cavitation bubbles, 

2. The BTF cavity model can consider the effects of bubble nuclei on cavitation 
inception and development, 

3. The BTF cavity model can express unsteady characteristics of vortex 
cavitation. 

The BTF cavity model, therefore, includes three essential factors for cavitation. 
Those factors are pressure, nuclei and time (Kato 1985). Furthermore, the BTF 
cavity model will be able to express the collapse of a bubble cluster by developing the 
model in future. By examining the computational and experimental results, the BTF 
cavity model has been proved useful for investigating vortex cavitation charac- 
teristics. Complicated interactions, in particular, between large-scale vortices 
caused by separation and bubble dynamics were clarified. However, further effort 
must be devoted to improvement of the microscopic cavity model. For instance, the 
pressure gradient of the vortex cavitation cloud might attract bubbles towards its 
centre. We must also take into account the convection and the distribution of 
bubbles, variation of the viscosity of the mixture and the slip between bubbles and 
liquid to predict the behaviour of cavitation clouds more accurately. Moreover, it is 
indispensable to clarify the effects of the grid spacing on the computed results and 
improve the computation scheme of SACT-111 to obtain quantitative agreement 
with experimental results. The accuracy improvement of computational results is 
one of the most important subjects at present. 
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